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We consider the evaporation of volatile liquid droplets deposited on a heated substrate
in a pure saturated vapour environment. A mathematical model is developed that
incorporates the effects of surface tension, evaporation, thermocapillarity, gravity,
disjoining pressure, as well as unsteady heat conduction in the solid substrate. The
apparent contact line is treated mathematically as a transition region between the
macroscopic droplet shape and the adsorbed film of liquid on the heated substrate.
Theoretical parametric studies are conducted to clarify the effects of thermocapillarity
and wetting properties on the droplet dynamics. An experimental study is conducted
in a closed container with de-ionized water droplets on a stainless steel foil heated by
an electric current. The interface shapes are recorded together with the temperature
profiles under the droplets, measured using thermochromic liquid crystals. Experiment
and theory are in very good agreement as long as the conditions of applicability of
our lubrication-type mathematical model are satisfied.

1. Introduction
Studies of volatile liquid droplets on heated solid substrates are important for

many applications, such as spray cooling of electronics or coating of a solid substrate
with a layer of another material. While the effects of capillarity and thermocapillary
stresses on droplet dynamics have been studied extensively (see e.g. Braun et al.
1995 and references therein), relatively few studies address the effects of evaporation.
Anderson & Davis (1995) and Hocking (1995) considered evaporating two-dimen-
sional droplets on a uniformly heated substrate in the framework of the lubrication
theory, valid when the droplet thickness is much smaller than its radius. The contact
angle for such droplets is different from its equilibrium static value due to flow near
the contact line and evaporation. Anderson & Davis (1995) suggested that each of
these effects results in a small correction to the contact angle, compared to its static
value, and therefore a linear combination of these corrections can be used to formulate
the contact-angle condition for volatile droplets. The correction to the equilibrium
value due to fluid flow was found based on experimental data for the case without
evaporation.

An alternative approach to mathematical modelling of evaporating droplets is
motivated by experimental studies of multilayer adsorbed films of vapour molecules
formed on the surfaces of solid materials in equilibrium with vapour (see e.g.
Derjaguin, Churaev & Muller 1987 for a review of experimental literature). When a
droplet surface appears to come into contact with the solid substrate on a macroscopic
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level, it may actually be in contact with this adsorbed film. This idea has been used by
Ajaev (2005) to develop a model of spreading of volatile liquid droplets on uniformly
heated surfaces. The moving contact line in this model is described as a localized
region of rapid change of curvature in a manner similar to models of isothermal
moving contact lines (de Gennes 1985), as well as several studies of steady menisci in
the presence of evaporation, by e.g. Potash & Wayner (1972) and Moosman & Homsy
(1980). We note that this approach does not require any modification of the classical
no-slip condition and is therefore most appropriate for situations when a positive
slip length is not expected, based on either experiments (Honig & Ducker 2007;
Vinogradova & Yakubov 2003) or molecular dynamics simulations (Freund 2005).

Volatile droplets in vapour environment have been studied not only theoretically but
also experimentally. Bourgés-Monnier & Shanahan (1995) studied thin droplets of wa-
ter and n-decane on different surfaces in the presence of evaporation. They measured
droplet radius and contact angle as functions of time. Gokhale, Plawsky & Wayner
(2003) studied evaporation and condensation of droplets of n-butanol formed within
a quartz cuvette that was partially filled with liquid and heated from either top or bot-
tom. They carried out measurements of the radius of curvature of the droplet as a func-
tion of time in the regime when the droplet size slowly decreased due to evaporation.

A related problem of evaporation of droplets into air without external heating has
been studied by e.g. Mollaret et al. (2004) and Hu & Larson (2005). The problem is,
however, different in the sense that the main limiting mechanism of the evaporation
process is the diffusion of vapour through air. A version of the same problem with
solid particles suspended in the droplet was studied by Deegan et al. (2000) to explain
the so-called ‘coffee-ring’ phenomenon, i.e. the brown ring left when a drop of coffee
dries on a counter top.

While investigations of volatile droplets have been carried out by many researchers,
two important issues are still unresolved. First, models of thin volatile droplets rely
on simple (in most cases constant temperature) boundary conditions at the solid–
liquid interface without consideration for heat conduction in the solid phase. Second,
experimental and theoretical investigations have been developing in parallel without
careful comparison between them for specific experimental systems.

In the present paper we develop a theory which is an extension of an earlier work
on volatile droplets (Ajaev 2005) that incorporates three additional physical effects:
(i) unsteady heat conduction in the solid under the droplet; (ii) heat losses to the gas
phase above the liquid film; (iii) the effect of wetting properties of the liquid in the
framework of a more general approach than in the earlier study. The theory, based
on a lubrication-type description of the liquid flow, is developed for the case of an
axisymmetric droplet in § 2. We then report an experimental study of evaporating
droplets, carried out in a closed container filled with saturated vapour (§ 3 and § 4).
Droplet shape data are obtained using optical methods, while temperature profiles
under the droplet are recorded simultaneously using thermochromic liquid crystals
(TLCs). The comparison between theory and experiment is presented in § 5, and we
end with conclusions and discussion in § 6.

2. Mathematical model
2.1. Formulation

We consider an axisymmetric droplet of a volatile liquid of density ρ and viscosity μ

on a heated rigid surface, as shown in figure 1. The droplet is placed on a heated foil of
thickness d∗ and thermal conductivity kf . Here and below, the dimensional variables,
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Figure 1. A sketch of a thin volatile axisymmetric liquid droplet on a multilayer substrate.

except for material properties such as kf and μ, are labelled with stars. When liquid
evaporates at the interface, the amount of heat supplied from the liquid side has to
be sufficient to balance the latent heat of phase change and the heat loss into the
vapour. The latter is typically much smaller than the former, so for the purpose of
estimating the liquid flow velocity near the interface it can be neglected. Then, if we
scale the length variables by d∗ and the temperature by the equilibrium saturation
temperature, T ∗

S , the characteristic flow velocity near the interface can be estimated as

u∗
0 =

kT ∗
S

ρLd∗ . (2.1)

Here k is the thermal conductivity of the liquid and L is the latent heat of vaporization
per unit mass. Based on this velocity scale, we define the capillary number

Ca =
μu∗

0

σ0

, (2.2)

where σ0 is the surface tension at the temperature T ∗
S . Estimates show that the capillary

number is typically small (on the order of 10−4 or less). However, this does not neces-
sarily imply that viscous effects are negligible compared to the effects of capillarity.
The two are equally important when the ratio of the droplet height to the radius of
the wetted area on the substrate is of the order of Ca1/3 (Anderson & Davis 1995).
This thin-droplet limit is the focus of the present study, so we develop asymptotic
expansions of the solutions for liquid flow and heat transfer in powers of Ca1/3.

Let us choose the length scales for the liquid flow problem in the horizontal and
vertical directions as d∗Ca−2/3 and d∗Ca−1/3, respectively; the resulting non-dimen-
sional cylindrical coordinate system, (r, z), is shown in figure 1. We note that such
scaling imposes limitations on droplet sizes. The experimental data are expected
to match our theory only when the assumptions of the model are satisfied. The
vapour–liquid interface in our formulation is represented by the function z = h(r, t),
where t is the time variable scaled by d∗Ca−2/3/u∗

0. The non-dimensional velocity
components in the radial and vertical directions, u and w, and the scaled pressure p

are defined in terms of their dimensional counterparts according to

u =
u∗

u∗
0

, w =
w∗

Ca1/3u∗
0

, p =
p∗d∗

σ0Ca
. (2.3)

The governing equations for liquid flow in the droplet at the leading order take the
usual lubrication-type form:

−pr + uzz = 0, (2.4)

−pz − Bo = 0, (2.5)

r−1(ru)r + wz = 0, (2.6)
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Here Bo = ρgd∗2/σ0Ca2/3 is the Bond number based on the droplet height, and g is
the acceleration of gravity.

The leading-order non-dimensional temperature profile in the liquid is defined by

Tzz = 0. (2.7)

Here and below all temperatures are scaled by the saturation temperature T ∗
S . We

assume that u0d
∗/αl is small (αl is the thermal diffusivity of the liquid) and therefore

the convective heat transfer in the liquid droplet is negligible. This is an important
limitation of the present model.

The dynamics of liquid flow and heat transfer in the droplet is coupled to heat
conduction in the solid substrate. Since the present theoretical work is motivated
in part by experiments, we use a heat conduction model that corresponds to the
experimental setup described in § 3. There are four layers of different solid materials
under the droplet: heated foil, thin layer of glue, thermochromic liquid crystals
(TLCs), and a Plexiglas plate, as shown in figure 1. (There is also a very thin
(150–200 nm) layer of coating applied on the upper side of the foil to reduce the
contact angle but it can be ignored without compromising the accuracy of heat
conduction model.) The foil and the layers of glue and TLCs are very thin compared
to the relevant horizontal length scales, so the equations for temperature profiles in
the foil (T f ), in the glue (T g), and in the TLCs (T c) take the following simplified form,

T
f

ẑẑ + q = 0, T
g

ẑẑ = 0, T c
ẑẑ = 0. (2.8)

Here the generation of heat in the foil due to electric current is described by the
constant density heat sources, q (scaled by kf T ∗

S d∗−2), ẑ = z∗/d∗, where z∗ is the
dimensional vertical coordinate. The Plexiglas plate is much thicker than the foil, so
the plate thickness is scaled by d∗Ca−1/3 and the equation for heat conduction there
is in the form

T
p
t = αT p

zz, (2.9)

where α is the thermal diffusivity of the Plexiglas scaled by d∗u∗
0. We note that while

T
p
t is typically rather small, it may still be comparable to the right-hand side of

(2.9) when T p
zz is sufficiently small; this is indeed the case in many of our numerical

simulations. At each interface between layers of different materials the temperatures
and the normal components of the heat flux are continuous.

Let us now turn to the boundary conditions at the liquid–vapour interface. The fluid
flow in the vapour phase directly above the liquid is in general coupled to the liquid
flow in the droplet. However, in this study we use the one-sided model of evaporation
of Burelbach, Bankoff & Davis (1988). It implies that the density and dynamic
viscosity of the vapour phase are very small compared to those of the liquid. Therefore
we take the limit when the corresponding non-dimensional ratios approach zero.
However, the vapour density is retained in the boundary conditions where it multiplies
the vapour velocity, which can be large. In order to include the non-dimensional
evaporative mass flux J into the leading-order mass-conservation condition we
scale the dimensional flux by ρu∗

0Ca1/3. With this choice and the above length
and velocity scales, the non-dimensional leading-order conditions for conservation
of mass and energy at the interface are written in the form

J + uhr − w = −ht , (2.10)

J = −Tz − Bi(T − 1). (2.11)
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Equation (2.11) can be interpreted as the balance between the heat conducted through
the droplet, the latent heat of the phase change at the interface, and heat loss to the
vapour. The latter is characterized by the Biot number Bi, which is estimated based
on the typical value of the Nusselt number for convective heat transfer in the vapour
phase. Motivated by the experimental setup described in § 3, we assume that natural
convection is the main mechanism of heat transfer in the vapour.

The normal stress condition at the interface includes contributions from capillarity
and disjoining pressure:

p − pv = −hrr − r−1hr − Π(h), (2.12)

where pv is the non-dimensional vapour pressure. The vapour recoil term in the
stress balance, discussed e.g. by Burelbach et al. (1988), is neglected in our model. We
assume that the disjoining pressure Π(h) is in the form

Π(h) =
ε

h3
− Dsech2

(
h

l0
− 2

)
. (2.13)

Here ε = |A|/(σ0d
2), and A is the Hamaker constant. The first term in the expression

for Π(h) is the standard contribution due to the London–van-der-Waals dispersion
forces, while the second one, first introduced by Wong, Morris & Radke (1992),
represents one of the many different approximations of the effect of other components
of disjoining pressure, e.g. due to electrostatic forces which can be more significant
than the dispersion forces over a range of values of film thickness (Derjaguin et al.
1987). The choice of parameters D and l0 and their relation to the wetting properties
of the liquid are discussed in detail in Wong et al. (1992). The disjoining pressure
is usually negligible except in the region of small h, where the transition between
the macroscopic droplet shape and the adsorbed film takes place. This region is
commonly referred to as apparent contact line, since on the macroscopic scale the
liquid–vapour interface appears to come into contact with the solid surface there.

We assume that the surface tension is a linear function of temperature,

σ = σ0 − γ (T ∗ − T ∗
S ), (2.14)

and introduce the modified Marangoni number Ma = γ T ∗
S /σ0. With this choice, the

shear stress condition at the interface is written as

uz = −Ma(Tr + hrTz), (2.15)

where Ma =Ma Ca−2/3 is assumed to be an order-one quantity.
The scaled interfacial temperature T in the liquid is related to the local mass flux

and pressure jump at the interface through the non-equilibrium condition, which can
be written in the following form (Ajaev & Homsy 2001):

KJ = δ(p − pv) + T − 1, (2.16)

where

K =
ρu∗

0

√
2πRT ∗

S /M

2ρvLCa−1/3
, δ =

σ0Ca

Lρd∗ . (2.17)

Here R is the universal gas constant, M is the molar mass. According to (2.16),
the departures of local temperature at the interface from the equilibrium value are
characterized by two non-dimensional parameters, K and δ. The kinetic parameter,
K , measures the relative importance of kinetic effects at the interface and is estimated
based on the kinetic gas theory, as discussed in Schrage (1953). A more accurate
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approximation developed by Rose (2000) results in an order-of-unity correction factor
in the definition of K , but this factor is omitted here since it does not have a significant
effect on the results of the present study. The parameter δ characterizes the effect of
changes in liquid pressure on the local phase-change temperature at the interface.

Liquid flow and heat transfer in the droplet are coupled to heat conduction in the
solid layers through the continuity of heat flux at the liquid–foil interface. This con-
dition, together with heat flux balances at the foil–glue and glue–Plexiglas interfaces,
allows us to find the relation between the vertical component of the temperature gradi-
ent at the top of the Plexiglas plate and the scaled evaporative mass flux J in the form

∂T

∂z
= kfp[q̂ − klf (J + BiT i − Bi)], (2.18)

where kfp = kf /kp , klf = kl/kf , and q̂ = q/C1/3. The temperature in the Plexiglas plate
away from the foil is equal to the saturation temperature, so the non-dimensional
boundary condition at the bottom of the computational domain is T = 1.

Finally, we note that at the solid–liquid interface the liquid velocity is zero. This
boundary condition completes the mathematical formulation of the problem.

2.2. Evolution equation

The asymptotic model introduced in the previous section allows one to reduce the
description of liquid flow to a single equation for droplet thickness, h(r, t). The
momentum equation (2.4) can be integrated twice to give the standard lubrication-
type velocity profile. By substituting this profile into the mass-conservation condition,
we obtain

ht + J =
1

3r
(rh3pr )r +

Ma

2r

[
rh2

(
T̄ f − Jh

1 + Bih

)
r

]
r

. (2.19)

Here T̄ f is the scaled difference between the top of the foil and the saturation
temperatures. Let us now express the scaled evaporative flux J in terms of T̄ f and
the interface shape. The non-equilibrium condition at the interface, equation (2.16),
relates J to the interfacial temperature. The latter can in turn be expressed in terms
of T̄ f , since according to the scaled heat conduction equation the temperature profile
in the film is linear in z. This yields

J =
T̄ f − δ[hrr + r−1hr + Π(h)](1 + Bih)

K + h + BiKh
. (2.20)

Substituting this formula together with the expression for pressure in the liquid
from the normal-stress balance, equation (2.12), into equation (2.19), results in the
differential equation for the film thickness:

ht +
T̄ f − δ(1 + Bih)[hrr + r−1hr + Π(h)]

K + h + BiKh
+ (3r)−1[rh3(hrr + r−1hr + Π(h) − hBo)r ]r

+
Ma

2r

[
rh2

(
T̄ f (1 + Bih)−1 − δ[hrr + r−1hr + Π(h)]

Kh−1 + 1 + BiK
− T̄ f

1 + Bih

)
r

]
r

= 0. (2.21)

The boundary conditions for (2.21) are the two symmetry conditions at r = 0 and
the conditions of zero first and second derivatives in the radial direction at r = L. The
value of L has to be chosen large enough so that both the slope of the liquid–vapour
interface and the radial temperature gradient remain negligible near r = L at all stages
of droplet evolution.
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Evolution of the droplet thickness, h(r, t), described by (2.21), is coupled to the heat
conduction in the solid. Analysis of the quasi-steady heat transfer model formulated
in (2.8) shows that with our scaling assumptions the temperature change across each
of the thin layers of solid materials is negligible compared to the temperature drop
across the droplet or the Plexiglas plate. Thus, it is sufficient to solve the equations for
heat conduction in the liquid and in Plexiglas and then use continuity of temperature
and the heat flux condition (2.18) to account for coupling between these two solutions.
This approach is taken in the present study. The no-flux condition for the temperature
field is applied at r = L.

To summarize, in order to find the droplet shape as a function of time one has to
solve the evolution equation (2.21) simultaneously with equation (2.9) that describes
unsteady heat conduction in the Plexiglas plate. The two equations are coupled
together: the temperature profile T̄ f (r, t) that appears in (2.21) depends on heat
conduction in the substrate, while the temperature gradient at the top of the Plexiglas
plate is related to the evaporation rate through (2.18).

Numerical solution of the system of equations (2.9) and (2.21) is carried out using
the finite-difference method with time-stepping performed by DVODPK solver, which
is based on the standard DVODE package (Brown, Byrne & Hindmarsh 1989) but
uses an iterative method for dealing with large linear systems which have to be solved
at each time step in the discretized problem. In order to accurately describe rapid
changes of the interface shape near the apparent contact line, local mesh refinement
is carried out there by decreasing the mesh size by a factor of eight. As the contact
line moves, the fine mesh is also shifted so that the point of maximum interfacial
curvature stays near the centre of the fine mesh region.

The initial conditions for the numerical simulations presented in this section are as
follows. Temperature in the solid plate is assumed to be initially uniform and equal
to unity (corresponding to a situation when the solid is heated up after a prolonged
contact with saturated vapour and is therefore at the saturation temperature).
Constant curvature droplet of unit height (in scaled variables) is introduced at t = 0,
placed on top of a uniform ultra-thin film of thickness 10−5.

2.3. Simulation results

The numerical method allows us to track the evolution of the droplet shape and
temperature field in the system for different values of non-dimensional parameters
introduced in § 2.1. Two of these parameters, the ratios of thermal conductivities kfp

and klf , are not varied in experiments. Based on the values of thermal conductivities
of the foil (stainless steel, 16.7 Wm−1 K−1), water (0.615 Wm−1 K−1), and Plexiglas
(0.19 Wm−1 K−1) we find kfp = 87.9 and klf = 3.68 × 10−2. These values are used in
all simulations in the present study. The Bond number is assumed to be negligible
everywhere in this section, as appropriate for sufficiently small droplets, although the
effects of gravity are included when comparison between theory and experiment is
made in § 5.

2.3.1. London–van-der-Waals disjoining pressure, negligible thermocapillarity

Let us first consider the case when liquid is perfectly wetting under the isothermal
conditions, i.e. the disjoining pressure is determined by London–van-der-Waals
dispersion forces and in our scaled variables is given by (2.13) with D = 0. The
parameter ε in this equation is a scaled version of the Hamaker constant, A. The
latter depends on the properties of the liquid, the vapour, and the solid substrate
and is generally rather difficult to measure. Fortunately, the numerical temperature
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Figure 2. (a) Contour plot of temperature field in the Plexiglas plate for t = 0.5. (b)
Temperature profiles under the droplet for t = 2 (solid line), t = 4 (dashed line), t = 6
(dot-dashed line), and t = 8 (dotted line).

profiles and macroscopic droplet shapes discussed below are not very sensitive to
the choice of ε as long as its value is sufficiently small; all simulation results in this
section are obtained for ε = 10−6. We also found that solutions are not very sensitive
to variations of parameter δ, allowing us to use the values of δ which are not as small
as in actual experiments. Let us for now assume the effect of thermocapillarity to
be negligible so that Ma = 0 in (2.21). Other non-dimensional parameters used in the
simulations in this subsection are K = 10−3, δ =10−5, α = 1, Bi= 10−4. While some of
their values are very small, all of these parameters turn out to have a significant effect
on the interface shape near the apparent contact line, i.e. for h � 1.

Let us discuss the numerical results for heat transfer in the system when the scaled
density of heat sources is q̂ = 10−4 (corresponding to the heater power of ∼4 W in
dimensional terms). This simulation was carried out in the domain of size L × Lv ,
L =2, Lv = 5; a uniform 201 × 201 mesh is introduced and then refined locally near
r = 1. A temperature distribution in the Plexiglas plate at t = 0.5 is illustrated by a
contour plot in figure 2(a) (the foil and droplet are above z =0, not shown). The
normal component of the heat flux on the boundary is non-zero only at the top
of the plate where it is coupled to the evaporation rate through equation (2.18).
The evaporative flux J in this equation is negligible when the top of the foil is
macroscopically dry, corresponding to r > 1.1 in figure 2(a). Vapour above the foil
in this region cannot provide a significant cooling effect since the value of the Biot
number, Bi, is small, so most of the heat generated in the foil is used to heat up the
substrate. As a result, a vertical temperature gradient is established, with temperature
decaying to its initial value away from the foil (large |z|).

For r < 1.1, the situation is different: heat generated in the foil can be removed
easily through the droplet due to evaporation, less heat goes into the Plexiglas, and
the temperature there remains close to its initial value. This effect is most prominent
in the region of small thermal resistance near the apparent contact line, as also seen in
figure 2(b), showing temperature profiles under the droplet at four different moments
in time. Away from the droplet, the substrate temperature increases with time while
remaining nearly uniform in space, as one would expect if no droplet were present. The
jump-like behaviour of the temperature profile near the apparent contact line clearly
indicates that mathematical models based on the assumption of constant substrate
temperature are not likely to accurately capture the evolution of the system, at least
for relatively low-thermal-conductivity substrates such as Plexiglas. The situation is
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Figure 3. Droplet height (a) and radius (b) as functions of time for different values of
the heating parameter: q̂ =10−4 (solid lines), q̂ = 2 × 10−4 (dashed lines), and q̂ = 3 × 10−4

(dot-dashed lines).

likely to be different for more conductive (e.g. metal) substrates since heat fluxes in
such substrate can be larger than typical heat fluxes through the droplet.

Let us now discuss droplet shapes. The maximum height of the droplet is recorded
as a function of time in figure 3(a) for three different values of q̂ , while figure 3(b)
shows corresponding plots for the wetted radius, Rw . The latter is defined as the
radial coordinate of the point of maximum curvature and can be interpreted as the
radius of the apparent contact line, also called the ‘droplet radius’. (The simulations
were carried out with 601 mesh points in the vertical direction and Lv = 40.) Since
the disjoining pressure is inversely proportional to the cube of film thickness, in the
absence of evaporation the droplet would be spreading indefinitely due to capillary
forces, with the inverse aspect ratio, hmax/Rw eventually approaching zero. Capillary-
spreading-type behaviour is seen in figure 3 only at the initial stage of droplet
evolution, when droplet height decreases rapidly and is essentially independent of
q̂ , while Rw increases. Then, at t ≈ 10 evaporation takes over, eventually leading to
relatively slow (compared to evolution at the initial stage) decrease in both the height
and the radius and preventing the inverse aspect ratio, hmax/Rw , from rapidly decaying
to zero. This is analogous to a steady-state situation when a finite contact angle is
established due to evaporation even for liquids that are perfectly wetting under the
isothermal conditions (Potash & Wayner 1972).

Comparison between different curves in figure 3(b) reveals that the parts of
the curves that correspond to decreasing wetted radius (R′

w(t) < 0) can actually be
transformed into each other by simple stretching/compression of both r and t . Let us
try to understand the origin of such self-similar behaviour. Outside the small region
near the apparent contact line, the droplet height is governed by an approximate
equation in the form

ht + J + (3r)−1[rh3(hrr + r−1hr )r ]r = 0. (2.22)

Here the scaled flux J is related to q̂ through (2.18). However, if we make a rough
approximation assuming that J is proportional to q̂ , as appropriate when all heat
generated in the foil under the droplet is used to evaporate the droplet, then a two-fold
increase in q̂ translates into a two-fold increase of J . If time and radial coordinate
variables are transformed simultaneously according to t → t/2, r → r/21/4, then the
approximate equation (2.22) does not change (i.e. it is invariant under this transform-
ation). The numerical results obtained from equation (2.21) and shown in figure 3(b)
indicate that at R′

w(t) < 0 the curve corresponding to q̂ = 0.0001 is transformed into
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Figure 4. Droplet radius as a function of time for K = 1.0, Ma = 10 (solid line) and
Ma = 0 (dashed line).

the curve corresponding to q̂ = 0.0002 when the variables are changed according to
t → t/1.75, r → r/1.06. While there is clearly some quantitative discrepancy between
this result and the prediction based on equation (2.22), the comparison is sufficiently
good to justify the proposed explanation of self-similar dynamics, especially given a
number of simplifying assumptions made in deriving the approximate equation (2.22).
We note that the self-similar behaviour cannot be correctly captured by models based
on the assumption of constant substrate temperature.

2.3.2. The effect of thermocapillarity

The effect of thermocapillary stresses is routinely neglected in the models of liquid–
vapour interfaces based on the assumption of local thermodynamic equilibrium.
The latter requires the interfacial temperature to be equal to its saturation value
and therefore implies that there are no thermal gradients along the interface.
However, it is important to emphasize that this argument is no longer valid when
non-equilibrium effects are taken into account, resulting in the dependence of the
interfacial temperature on the local evaporation rate. In the present study, the non-
equilibrium effects at the interface are measured by the non-dimensional parameter
K . We conducted numerical studies of droplet shape evolution over a range of
values of K and the modified Marangoni number, Ma, and found that the effects
of thermocapillarity for realistic values of Ma are very small unless the value of K

is close to unity or higher. A typical plot of droplet radius versus time for K = 1
and Ma= 10 (corresponding to Ma ∼ 0.1) is shown in figure 4 (solid line). The result
for Ma = 0 is also shown by a dashed line for comparison; the values of all other
parameters are the same as in the previous subsection. The temperature gradient
along the interface is directed from the hotter region near the apparent contact line
toward the colder region at the top of the droplet, so thermocapillarity results in
smaller values of the droplet radius than predicted by the theory for Ma = 0.

Droplet spreading and evaporation in the presence of thermocapillary stresses
was previously studied under the assumption of uniform temperature of the solid
substrate (Ajaev 2005). We found that for comparable droplet sizes and evaporation
rates the present model predicts smaller temperature gradients near the apparent
contact line (and therefore weaker thermocapillarity) than the previous study. This
can be explained by the effect of heat conduction in the solid that tends to prevent
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Figure 5. Droplet radius and height versus time for D = 5.0, l0 = 0.1, q̂ = 3 × 10−4.

formation of localized regions of high-temperature gradients in the liquid near the
apparent contact line.

The present model predicts that thermocapillary stresses not only affect the flow
in the droplet but can also cause deformations of the vapour–liquid interface in the
nearly flat ultra-thin film. However, it is important to keep in mind that our treatment
of thermocapillarity is likely to break down on such small scale where the surface
tension depends not only on the local temperature but also on the nature of surface
forces acting on the film. Therefore, these deformations in the adsorbed film are not
discussed here.

2.3.3. Two-component disjoining pressure

Figure 5 shows droplet height and radius as functions of time for q̂ = 3 × 10−4 and
the general model of disjoining pressure given by (2.13) with D = 5, l0 = 0.1; other
parameter values are the same as in § 2.3.1. Equation (2.13) with D > 0 describes a
situation when two components of disjoining pressure are present and the apparent
contact angle is non-zero under the isothermal conditions, as discussed in Wong et al.
(1992). Comparing the dot-dashed lines in figure 3 (that correspond to the one-
component London–van-der-Waals model of disjoining pressure and q̂ = 3 × 10−4)
and figure 5, we observe that in the latter case droplet height is larger and its radius is
smaller throughout most of droplet evolution. This can be explained by larger values
of the apparent contact angle, which can be estimated as a sum of its isothermal value
and a correction due to evaporation (Anderson & Davis 1995). The isothermal contact
angle in figure 3 is zero since the London–van-der-Waals model of disjoining pressure
corresponds to liquids that are perfectly wetting under the isothermal conditions.

At the late stages of evolution (at t ∼ 40 in figure 5) there is clearly a transition
point where droplet radius changes from nearly constant to rapidly decaying. The
rate of change of height at this point in time becomes nearly constant. The latter
is approximately the same as the rate of change of hmax in figure 3, suggesting a
simple explanation for the transition. The linear decay of hmax(t) is recovered because
the second component of disjoining pressure in (2.13) for such thin droplets is much
smaller than the first one, so the dynamics is dominated by the London–van-der-
Waals forces. The value of hmax corresponding to this transition is on the order of
l0 and therefore turns out to be rather small in most experiments with macroscopic
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droplets (we have chosen a relatively large l0 in figure 5 to illustrate clearly the late
stages of droplet evolution).

It is interesting to note that the nearly constant droplet radius over a significant time
interval seen in figure 5 implies that the contact line at this stage can be considered
‘pinned’. Contact line pinning is often explained in the literature by the effects of
surface roughness or chemical defects. Our simulation results shown in figure 5
suggest that pinned-contact-line-type behaviour can be observed even on smooth
homogeneous substrates, as a result of interplay between different components of
disjoining pressure. The transition to rapid decay in droplet radius seen at the final
stages of droplet evolution can then be interpreted as sudden de-pinning that is also
often observed in experiments.

3. Experimental methods
We perform experiments to obtain data for droplets evaporating on a thin-foil

heater. Evolution of both the temperature field on the heater and the droplet shape
are investigated. To obtain the temperature field we use thermochromic liquid crystals
(TLCs) applied to the lower surface of the foil heater, while the evolution of the droplet
shape is observed simultaneously via the shadow method with a CCD camera. These
are the main ideas leading to the setup which is described in the following subsection.

3.1. Experimental setup

A schematic of the experimental system is shown in figure 6. The experiments have
been conducted in a closed Plexiglas container of size of 300 mm × 300 mm × 380 mm.
In order to create a saturated vapour atmosphere, the experimental container is
equipped with a reservoir for de-ionized water and a cartridge heater. A syringe
(needle diameter 330 μm) filled with deionized water is used to generate single droplets,
which can be either dropped or deposited on the heater where they evaporate. The
syringe can be actuated from outside the experimental container.

A schematic of the heater is shown in figure 7. It consists of an electrically
heated 10 μm thick stainless steel foil and a fixation system with springs to ensure
a wrinkle-free heater surface. The heated surface has a size of 60 mm × 30 mm.
A sheet of thermochromic liquid crystals is applied to the lower surface of the
heating foil using a thin layer (40 μm) of a glue with a high thermal conductivity
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of (kg = 7 W m−1 K−1). TLCs reflect a distinct colour depending on their temperature
when illuminated by white light. Below and above their active temperature range
they are transparent so that only their black background coating can be observed.
Within their working range the reflected light changes from red to green to blue with
increasing temperature. Images of the TLCs are captured using a three-chip colour
CCD camera (CCD camera 1 in figure 6). The colour information is converted
from the RGB signal of the camera to the HSV colourspace (hue, saturation,
value). In the HSV colourspace, the hue value is measured in degrees. It contains
all the colour information and can therefore be used as a single value for the
temperature measurement. An ‘in situ’ calibration method for the TLCs has been
developed, where the TLCs can be calibrated within the experimental setup, with
the temperature of the TLCs being controlled via a thermostat. A correlation of hue
value and temperature is obtained by measuring the temperature of the TLCs with
thermocouples and simultaneously recording their colourplay. A 7th-order regression
proved to be a good approximation for the correlation. The stainless steel foil is
electrically heated with constant voltage and current, resulting in a constant heat
flow density in the foil. Owing to the small thickness of the foil the temperature
distribution on the back of the foil does not deviate significantly from that on the
front of the foil. This has already been shown for a capillary slot experiment where
the same foil has been used (Höhmann 2004). The TLCs are illuminated through
the Plexiglas base plate of the heater with a ring light, which is connected to a
cold light source. The TLC colourplay is acquired with a frame rate of 2 Hz. The
spatial resolution of the TLC images is 14 μm2/pixel. Owing to the limited working
bandwidth of TLCs, the pressure inside the Plexiglas container has to be controlled
to ensure that the saturation temperature of water is well between the limits of the
TLC working bandwidth. A vacuum pump is used to keep the pressure inside the
Plexiglas container at 50 mbar (±4 mbar) which relates to a saturation temperature
of 33 ± 2 ◦C. The pressure inside the container is monitored with a pressure
transducer. The vapour temperature inside the container is measured with two
thermocouples at different locations. The evolution of the droplet shape is observed
horizontally from the side by means of a second CCD camera (CCD camera 2).
To obtain images with sharp edges the droplets are lit with parallel back light. The
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Figure 8. Image of droplet on heater.

images of the droplets are acquired with a frequency of 2 Hz. The spatial resolution
of these images is 9 μm2/pixel.

3.2. Experimental procedure

Before each set of experiments, the heating foil is cleaned with acetone and rinsed with
de-ionized water. Afterwards, the heater is coated with a thin layer (150–200 nm) of a
hydrophilic paint (Roehm GmbH & Co. KG, Germany) to reduce the contact angles
to the values of 15◦ or below. Then the experimental container is evacuated down
to 40 mbar and the cartridge heater is switched on. Experiments are started when
the temperature inside the container reaches 32 ◦C and the pressure increases up to
50 mbar with the vacuum pump running continuously. At that point the power to the
cartridge heater is reduced to maintain a constant temperature inside the experimental
container. Both CCD cameras are started and a first droplet is generated using the
syringe. The CCD cameras are stopped when the droplet has fully evaporated, which
is decided by examining the images from both cameras. Then the image acquisition
is started again and the next droplet is generated.

3.3. Image processing

The captured TLC images are processed using MATLAB to convert them into
temperature profiles. Temperatures are measured along lines for which the starting
and ending points are chosen based on the first TLC image. The same line is then used
for the complete sequence. To reduce noise, an averaging filter over an area of 3 × 3
pixels is applied to the images before converting the hue values to temperatures. The
uncertainty of the TLC temperature measurement is estimated to be within ±0.5 ◦C,
mostly due to the usage of encapsulated TLCs and a high spatial resolution which
causes problems with the temperature measurement at the edges of the TLC capsules.

The droplet images are saved as grey-scale matrices and are also processed using
MATLAB. Before each set of measurements, a reference image is acquired showing
the heater without any droplet. To track the evolution of the diameter of the wetted
area, droplet height, and apparent contact angle as the droplet evaporates, the steps
described in the following are performed. First, the reference image is subtracted
from each droplet image resulting in a new image that only contains the shape of the
droplet and is black (has zero intensity) elsewhere. Then the contrast is enhanced and
the wetting diameter is detected by finding the first column of the intensity matrix
from the right and the left edge of the image that has a non-zero pixel. The distance
between those columns is the diameter of the droplet in pixels. The diameter can easily
be calculated based on the reproduction scale of the optics. To evaluate the droplet
height from each image, the droplet is assumed to be symmetric. Therefore the height
of the droplet is evaluated at the droplet centre by finding the first non-zero pixel at
the corresponding column of the grey-scale matrix. To obtain the apparent contact
angle of the droplet, the shape of the droplet is fitted with a conical section using the
upper half of the circle equation, which has been proved to be a good approximation.
An image of an evaporating droplet with the fitted conical section is shown in figure
8. The volume of the droplet is also calculated based on this equation. By performing
the steps described above for every droplet image captured as a droplet evaporates,
the evolution of the quantities of interest can be determined. The uncertainty in the
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measurements obtained from the image processing is estimated to be up to 2 pixels
per detected edge, leading to an uncertainty of ±36 μm for the diameter and ±18 μm
for the droplet height. Furthermore, each droplet image can be related to a TLC
image so that the corresponding temperature profile below the evaporating droplet
can also be obtained.

4. Experimental results
Experiments have been conducted with different heating powers ranging from 1W

to 3 W. In addition, the initial size of the droplet (before it hits the substrate) was
varied between 1mm and 3 mm. The initial apparent contact angle was in the range
of 10◦ <θ∗ < 20◦, despite the care taken when cleaning and coating the heater. This
variance in the apparent contact angle might also be caused by a variation in the
way the droplet was deposited, since the distance between syringe needle and heated
surface varied according to the filling of the syringe by up to 20 mm. Additionally,
impurities from the droplets might have agglomerated on the heater. All experiments
show the same general behaviour of the droplets, independent of heating power and
droplet size.

4.1. Evolution of droplet shape

In the following, results for a heating power of 2.5 W will be presented. As shown in
figure 9, just after the droplet is deposited on the heating foil the apparent contact
angle θ∗ starts to decrease until it reaches a value of θ∗ ≈ 9◦ after t∗ = 20 s. Then, the
apparent contact angle increases slightly. However, this increase seems to be within
the range of uncertainty of the measurement. In the last phase of the droplet lifetime
rather large oscillations in θ∗ can be observed. These oscillations are due to errors
caused by the fitting algorithm and are triggered by the small droplet diameter and
height during that phase.

Figure 10 shows the evolution of the droplet diameter D∗ versus time t∗. As
the droplet evaporates, the absolute rate of change of droplet diameter increases.
Simultaneously, the droplet height h∗ decreases. While the droplet height h∗ strongly
decreases with time t∗ (see figure 11) as long as both apparent contact angle θ∗ and
droplet diameter D∗ decrease, the change of droplet height h∗ with time t∗ slows
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down at t∗ ≈ 20 s, when the apparent contact angle θ∗ remains constant while only
the droplet diameter D∗ reduces.

The change of droplet volume V ∗ with time t∗ is shown in figure 12. After the
droplet is deposited on the heater, its volume reduces fast as contact angle and
diameter shrink. The change of volume with time slows down as more and more fluid
evaporates and the droplet diameter reduces. Due to the reduced droplet diameter,
less heat is transferred from the foil heater to the droplet, which results in a lower
evaporation rate and hence in a slower change of droplet volume V ∗ with time t∗.

4.2. Evolution of temperature

Recoding the colour of the TLCs below an evaporating droplet allows us to obtain
accurate measurements of temperature profiles. The TLCs reflect green light in the
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Figure 13. Evolution of temperature distribution beneath the evaporating droplet.

area under the droplet. This green changes to blue and then to black with increasing
distance from the droplet centre, indicating that the temperature rises.

The temperature profile under an evaporating droplet at four different times (t∗ = 1 s,
t∗ = 2 s, t∗ = 20 s, t∗ = 50 s) after the droplet was deposited on the surface is displayed
in figure 13. It shows for all cases an almost constant temperature underneath the
droplet and a strong temperature rise within a length of less than 0.2 × 10−3 m in the
direction of the adsorbed film area of the heating foil. During the first seconds after
the droplet is deposited on the heating foil, the temperature underneath the droplet
reduces fast. The change of temperature is less pronounced for the later stages of
evaporation, as can be seen in figure 13. Within the first two seconds after the droplet
is deposited on the heater, the temperature changes by an average of ΔT̄ ∗

h ≈ 0.5 ◦C
below the droplet, while the temperature change is ΔT̄ ∗

h ≈ 1.1 ◦C between t∗ = 2 s and
t∗ = 20 s and only ΔT̄ ∗

h ≈ 0.05 ◦C between t∗ = 20 s and t∗ = 50 s.
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Figure 14. Dimensional droplet height (a) and wetted radius (b) as functions of time computed
from the mathematical model (dashed line) and measured experimentally (solid line).

5. Comparison between theory and experiment
Let us now compare the results obtained from the mathematical model of § 2

and the experimental measurements discussed in § 4. Based on the parameters
of our experimental setup, the non-dimensional constants of the model are
K =2.2 × 10−3, δ = 2.9 × 10−6, α = 1.3, Bi= 1.3 × 10−4, Bo= 0.01, q̂ = 6.2 × 10−5; the
effect of Marangoni stresses is negligible. There are no accurate data for disjoining
pressure parameters for water on the coated surface used in experiments, but, as
discussed above, our model is not very sensitive to the changes in the scaled Hamaker
constant, ε, as long as the latter remains sufficiently small. The wetting properties
of water on the coated foil surface in our model are controlled by the parameters
D and l0 in the disjoining pressure formula, (2.13). The values of the latter are
chosen based on the experimentally observed values of the apparent contact angle
and are kept constant during the simulation. While the simulation produces results in
non-dimensional form, the values of physical variables can be easily recovered using
the definition of scales provided in § 2.1. A typical comparison between theory and
experiment for droplet height is shown in figure 14(a). The solid line corresponds to
experimental data and the dashed line is the prediction of the model. Comparison
between the experimental and theoretical values of the dimensional droplet radius,
R∗

w , is shown in figure 14(b).
The initial discrepancy between theory and experiment seen in figure 14 is due to

the fact that our lubrication-type theory is not valid immediately after the impact
when the dimensional aspect ratio of the droplet is not sufficiently large. In fact, the
experimental recording of the droplet shape starts when the aspect ratio is just 5,
while the model requires it to be close to C−1/3 ∼ 23.2. After τ ∼ 20 s the thin-droplet
regime is established and the agreement between theory and experiment is clearly
very good.

Our numerical temperature profiles indicate that the dimensional temperature
near τ ∼ 50 s is expected to be close to 33.3 ◦C everywhere under the droplet and
approach 41 ◦C away from the droplet. This is clearly in reasonable agreement with
the experimentally measured values seen in figure 13.

6. Conclusions
We have investigated evolution of thin volatile droplets on a heated surface in a pure

vapour environment both theoretically and experimentally. Our mathematical model
accounts for the coupled effects of capillarity, thermocapillary stresses, evaporation,
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heat conduction in the solid substrate, gravity, and disjoining pressure. A lubrication-
type framework is employed to derive an evolution equation for the droplet thickness.
The apparent contact line is defined as the transition region between the macroscopic
droplet shape and the adsorbed film.

Numerical results for temperature profile under the droplet show a sharp
temperature drop near the apparent contact line, suggesting that models based on
the assumption of constant substrate temperature may not be appropriate for many
practical situations. Our results also indicate that these models do not provide an
accurate description of the role of thermocapillarity in droplet spreading.

Droplet dynamics depends on both heater power and wetting properties of the
liquid. When a liquid is perfectly wetting under the isothermal conditions, nearly
self-similar behaviour is seen when heater power is varied, but it breaks down when
the effects of partial wetting are included. The latter result in different stages of
evolution, with one of them corresponding to nearly constant wetted radius. Thus,
we conclude that a situation very similar to classical contact line pinning can be
encountered, as a result of the interplay between different components of disjoining
pressure, even when the substrate is smooth and chemically homogeneous.

The experimental studies are conducted in a closed container filled with saturated
vapour. Water droplets are deposited on a thin hydrophilic foil heater. The evolution
of the droplet shape is observed with a CCD camera via the shadow method, while
the temperature distribution below the droplet is measured simultaneously with a
high resolution using thermochromic liquid crystals. Measurements of the apparent
contact angle, diameter, height and volume of the droplet as well as the temperature
distribution are obtained as the droplet evaporates.

The comparison between theory and experiment is very good, thus justifying the
approach and opening up the possibility of using the model to understand a number
of experimental results, including recent fascinating observations of interplay between
evaporation and contact line instabilities (Poulard, Bénichou & Casabat 2003; Gotkis
et al. 2006). Furthermore, the quantitative agreement between theory and experiment
demonstrated in the present work allows one to use it for practical applications in
heat transfer problems.

This work was supported by the Alexander von Humboldt Foundation and the
NSF. The authors are grateful to Professor Ian Gladwell for valuable advice on
numerical computations.
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